Gait Optimization of Biped Robot during Double Support Phase by Pure Dynamic Synthesis
نویسندگان
چکیده
This paper deals with dynamic optimization of biped locomotion. The main focus of this research is motion optimization of double support phase. The optimization problem is dealt by using Pontryagins Maximum Principal. For motion optimization of double support phase, the closed kinematic chain has been considered to be opened at appropriate joint and the components of ground reaction forces has been applied on the tip of front leg and finally the penalty method has been used to tighten the leg to its prescribed location. The feasible sets of motion are taken into consideration by using inequality constraint to limit the joint motion. Also the components of ground reaction forces on front leg have been introduced as control variables in optimization of double support phase. The proposed technique has the ability to generate optimal free motions without specifying joint trajectories and minimized the performance criterion based on joint actuating torques. The two point boundary value problem has been solved by implementing a shooting method. This technique allows for specifying a few parameters to characterize gait pattern. The optimization process has the ability to generate a motion with a minimum of postural and kinematics data. Unlike previous research which used computational intelligent techniques for biped gait optimization, this study focuses on development of purely dynamic synthesis of biped motion during the double support phase.
منابع مشابه
Energy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking
In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...
متن کاملOptimal Gait Generation in Biped Locomotion of Humanoid Robot to Improve Walking Speed
Humanoid robot is a type of robot that the overall appearance is based on that of the human body. Humanoid robots include a rich diversity of projects where perception, processing and action are embodied in a recognizably anthropomorphic form in order to emulate some subset of the physical, cognitive and social dimensions of the human body and experience. The research on humanoid robots spans f...
متن کاملStable Gait Planning and Robustness Analysis of a Biped Robot with One Degree of Underactuation
In this paper, stability analysis of walking gaits and robustness analysis are developed for a five-link and four-actuator biped robot. Stability conditions are derived by studying unactuated dynamics and using the Poincaré map associated with periodic walking gaits. A stable gait is designed by an optimization process satisfying physical constraints and stability conditions. Also, considering...
متن کاملImpactless Sagittal Gait of a Biped Robot During the Single Support Phase
The problem of generating optimal sagittal reference gaits in bipedal walking is addressed. In our study the single-support phase during which the biped reaches its highest instability will be considered. The approach developed allows for a fully dynamic model of the biped, and is based on minimizing the integral of quadratic joint actuating torques. Impactless and non-sliding heel-touch will b...
متن کاملOptimal Gait Synthesis of a Seven-Link Planar Biped
In this paper, we carry out the dynamics-based optimization of sagittal gait cycles of a planar seven-link biped using the Pontryagin maximum principle. Special attention is devoted to the double-support phase of the gait, during which the movement is subjected to severe limiting conditions. In particular, due to the fact that the biped moves as a closed kinematic chain, overactuation must be c...
متن کامل